Grant information


closed    Opened: 30 March 2022   |   Closes: 31 May 2022

Overview

The use of Fuel Cells enables the generation of electricity aboard the aircraft from hydrogen (stored in a dedicated tank) and oxygen (air) without any CO2, NOx, particles emission as the only by-products of the reaction are water and heat. Therefore, these technologies have the potential to strongly reduce aviation emissions & pave the way to climate neutrality. Additionally, they can drastically reduce the noise when compared to gas turbines, both when a/c moving (flight/taxi) and on ground/stopped (while operating non propulsive energy systems).

Depending on the power delivered, fuel cells can supply either non-propulsive systems (electrical anti-ice systems, electrical Environmental Control System, Green Taxiing) or propulsive systems (electrical engines and propeller).

Experience shows that aviation constraints (weight, altitude) will require specific technologies in order to meet necessary KPIs.

Project results are expected to contribute to all of the following expected outcomes:

  • Preliminary design of fuel cell systems with high efficiency and high gravimetric power density, compatible with aeronautical specifications and constraints and
  • The maturation of necessary sub-components for this system (stack, balance of plant components etc) up to TRL5.

At the end of the project, performed lab and ground tests should have proven concept feasibility. The technologies will then be further matured under the support of the Clean Aviation partnership, embedded and integrated in a specified architecture for demonstrations.

Project results are expected to contribute to all of the following objectives of the Clean Hydrogen JU SRIA:

  • FC module durability [h]: 20,000 in 2024 and 30,000 in 2030;
  • FC system efficiency [%]: 45 in 2024 and 50 in 2030;
  • FC system availability [%]: 95 in 2024 and 98 in 2030;
  • FC system gravimetric index [kW/kg]: 1 in 2024 and 2 in 2030.

In addition to the KPIs above and when considering a system size of 1.5MW the proposal should also contribute to the achievement of the following:

  • Power Densities @stack level > 3kW/kg in nominal power (and not peak power);
  • Membrane Electrode Assembly > 1.25 W /cm2;
  • Understanding of the ageing kinetics (= performances degradation in time) ;
  • Environmental conditions: temperature, pressure, vibration and other area of interest (i.e. DO 160) compatible with aircraft environment;
  • Demonstration fully answers the qualification needs.

The stack to be developed under this topic should be compatible with the requirements of the Clean Aviation Partnership SRIA in order to be implemented in ground and in-flight demonstrations scheduled within Clean Aviation partnership.

Scope

The technology (Proton Exchange Membrane Fuel Cell) that is emerging from the automotive industry through car manufacturers is of interest for aeronautic industry, but some issues are still to be solved (hydrogen storage and distribution from the tank to the fuel cell system are not considered here)

  • The power of the fuel cell systems coming from the automotive industry is usually limited roughly to 100kW. Aviation needs are more in the range of 1 to 5MW depending on the size of the aircraft and/or the systems to supply with power (propulsive or non-propulsive). Development of 250 kW FC stack and scalability of FC system and components for an at least 1.5 MW module seems thus compulsory in order to allow aircraft application. This target is moreover clearly defined in the Clean Aviation SRIA;
  • The stacks available today are not adapted to the environment in which they will have to operate: temperature ISA-35, pressure 0,2 bar (45 kft), vibrations, etc;
  • The requested power is not achievable with only one stack. The following should be defined: 
      • The optimal size of the stack;
      • The architecture of multi-stack systems.
  • The cost of the technology needs to be reduced. Sizing a unitary stack of a reasonable amount of power will ease its integration in different size of aircraft and for propulsive and non-propulsive systems. This will increase the numbers and ease cost reduction;
  • The lifetime of the fuel cells should be increased;
  • Safety issues shall be considered right from the start. The means of compliance in order to answer to qualification/certification needs are not available. The certifications rules should be created/adapted.

Proposals should target a fuel cell system with a power density > 1.5kW/kg at a power level of at least 1 MW. The goal is to bring the technologies and sub systems to TRL5 at the end of the project, with lab and ground tests in a relevant environment.

This topic is crucial regarding the commercialisation of FC Systems in aviation.

The integration of the full system into the aircraft needs to be considered and anticipated but is not the key focus and will be dealt with in a separated Work Programme. In the frame of Clean Aviation Partnership, an open call is expected to be launched to cover system integration and demonstrations.

Proposals should tackle the following aspects:

Requirements & specification

  • Define a system compatible with aircraft (A/C) environment and constraints (safety, durability, availability, temperature, pressure);
  • Define architecture to optimise weight and adequation to safety requirements. A system requirement and a high-level architecture optimum should be defined and agreed early in the project;
  • Derive necessary technological bricks to be matured up to TRL5.

Fuel cell stack subsystem

  • Increase the power density of the stack, by optimising designs through several means, for example but not exhaustive: lightweight metal substrates, high performance Membrane Electrode Assembly (MEA)/flow field combination, optimised stack compression system;
  • Define and design stack architectures (i.e.: liquid cooled / 2-phase cooled). Separate paths may be explored;
  • Increase the operating temperature of the stack and its capability to support larger inlet/outlet cooling temperature ranges, without compromising its lifetime;
  • Analyse the robustness of the fuel cell stack to contaminants or other pollution source of the membrane;
  • Reduce pressure losses over the stack, especially on the cathode, to balance stack performance versus system performance.
  • The stack to be developed under this topic should be compatible with the requirements of the Clean Aviation Partnership SRIA in order to be implemented in ground and in-flight demonstrations scheduled within Clean Aviation partnership.

Balance of Plant (BoP) subsystem

  • Define and resize anode and cathode BoP for stack regulation. BoP architectures may differ depending on stack architecture;
  • Define a lightweight and robust stack monitoring system, easy to install and repair.

Besides, great care should be taken to the fuel cell interfaces, which will impact the trade off and overall system benefits:

Thermal management subsystem

  • Fuel cell stack thermal management is key and should be analysed.
  • Proposals will also have to cope with preliminary design of stack heat management. The realisation of fuel cell system driven aviation belongs from the maturity and understanding of fuel cell system components and behaviour in aircraft environment. Based on stack developments scheduled in the first phase of the project, a focus on fuel cell system behaviour at continuous (more than 15 minutes) max power operation is strongly encouraged, so that dedicated heat management bricks will have to be developed. The technology drivers, components and behaviours which will be functionally upgraded can be (non exhaustive list): cathode air supply, intercoolers HEX, cathode humidifier, anode recirculation, relative humidity sensors, stack cooling pump, stack cathode and cooling flow pressure drop. Major focus will be (on at least a 300kW electric FC unit) the integration, debug and test of a FC module at max constant cooling temperature under A/C conditions. An additional focus will be the thermal optimisation of the cooling system and controls during major load changes.

Air supply subsystem

  • Define the air supply subsystem adapted to high altitude conditions (high compression rate and efficiency) and propose potential technological bricks in order to ensure this function: air inlet, filter, compressor and turbine, intercooler, humidification system, cathode recirculation, water separation, water management, air exhaust, piping and tubing, valves, temperature management, flow measurement and associated control.

Other hydrogen sub systems (storage, distribution) are outside of the scope of this topic. Proposals may include activity for the test bed development for FC testing in simulated A/C applications, and the development of relevant test protocols for performance and lifetime assessment for A/C load and operating environment profiles.

Activities developing test protocols and procedures for the performance and durability assessment of electrolysers and fuel cell components proposals should foresee a collaboration mechanism with JRC (see section 2.2.4.3 "Collaboration with JRC"), in order to support EU-wide harmonisation. Test activities should adopt the already published EU harmonised testing protocols[1] to benchmark performance and quantify progress at programme level.

Activities are expected to start at TRL 4 and achieve TRL 5-6 by the end of the project.

The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2022 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2021–2022 which apply mutatis mutandis.

[1]https://www.clean-hydrogen.europa.eu/knowledge-management/collaboration-jrc-0_en

General Conditions

  1. Admissibility conditions:described inAnnex A and Annex E of the Horizon Europe Work Programme General Annexes

 Proposal page limits and layout: described in Part B of the Application Form available in the Submission System

 Additional condition: For all Innovation Actions the page limit of the applications are 70 pages.

  1. Eligible countries:described inAnnex B of the Work Programme General Annexes

A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon Europe projects. See the information in the Horizon Europe Programme Guide.

 

  1.  Other eligibility conditions:described in Annex B of the Work Programme General Annexes

Additional eligibility condition: Maximum contribution per topic

For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to limit the Clean Hydrogen JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operation environment and with important involvement from industrial stakeholders and/or end users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated:

- HORIZON-JTI-CLEANH2-2022-01-07 - The maximum Clean Hydrogen JU contribution that may be requested is EUR 9.00 million

- HORIZON-JTI-CLEANH2-2022-03-03 - The maximum Clean Hydrogen JU contribution that may be requested is EUR 30.00 million

- HORIZON-JTI-CLEANH2-2022-03-05 - The maximum Clean Hydrogen JU contribution that may be requested is EUR 15.00 million

- HORIZON-JTI-CLEANH2-2022-04-01 - The maximum Clean Hydrogen JU contribution that may be requested is EUR 7.00 million

- HORIZON-JTI-CLEANH2-2022-06-01 - The maximum Clean Hydrogen JU contribution that may be requested is EUR 25.00 million

- HORIZON-JTI-CLEANH2-2022-06-02 - The maximum Clean Hydrogen JU contribution that may be requested is EUR 8.00 million

 Additional eligibility condition: Membership to Hydrogen Europe/Hydrogen Europe Research

For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to ensure that one partner in the consortium is a member of either Hydrogen Europe or Hydrogen Europe Research. This concerns topics targeting actions for large-scale demonstrations, flagship projects and strategic research actions, where the industrial and research partners of the Clean Hydrogen JU are considered to play a key role in accelerating the commercialisation of hydrogen technologies by being closely linked to the Clean Hydrogen JU constituency, which could further ensure full alignment with the Strategic Research and Innovation Agenda of the Industry and the SRIA188 of the JU. This approach shall also ensure the continuity of the work performed within projects funded through the H2020 and FP7, by building up on their experience and consolidating the EU value-chain. This applies to the following topics: 

- HORIZON-JTI-CLEANH2-2022 -01-07

- HORIZON-JTI-CLEANH2-2022 -01-08

- HORIZON-JTI-CLEANH2-2022 -01-10

- HORIZON-JTI-CLEANH2-2022 -02-08

- HORIZON-JTI-CLEANH2-2022 -03-03

- HORIZON-JTI-CLEANH2-2022 -03-05

- HORIZON-JTI-CLEANH2-2022 -04-01

- HORIZON-JTI-CLEANH2-2022 -06-01

- HORIZON-JTI-CLEANH2-2022 -06-02

 - HORIZON-JTI-CLEANH2-2022 -07-01

 Additional eligibility condition: Participation of African countries

For one topic the following additional eligibility criteria have been introduced to allow African countries to i) participate in proposal, ii) be eligible for funding and iii) ensure a sufficient geographical coverage of the African continent. This concerns the following topic: 

- HORIZON-JTI-CLEANH2-2022 -05-5

Manufacturing Readiness Assessment

For some topics a definition of Manufacturing Readiness Level has been introduced in the Annexes of the Annual Work Programme. This is necessary to evaluate the status of the overall manufacturing activities included in the following topics:

- HORIZON-JTI-CLEANH2-2022 -01-04

- HORIZON-JTI-CLEANH2-2022 -04-01

  1. Financial and operational capacity and exclusion:described in Annex C of the Work Programme General Annexes
  2. Evaluation and award:
  • Award criteria, scoring and thresholds are described in Annex D of the Work Programme General Annexes
  • Submission and evaluation processes are described in Annex F of the Work Programme General Annexes and the Online Manua

Exemption to evaluation procedure: complementarity of projects

For some topics in order to ensure a balanced portfolio covering complementary approaches, grants will be awarded to applications not only in order of ranking but at least also to one additional project that is / are complementary, provided that the applications attain all thresholds

- HORIZON-JTI-CLEANH2-2022 -01-03

- HORIZON-JTI-CLEANH2-2022 -01-04

- HORIZON-JTI-CLEANH2-2022 -01-09

- HORIZON-JTI-CLEANH2-2022 -02-10

- HORIZON-JTI-CLEANH2-2022 -03-01

- HORIZON-JTI-CLEANH2-2022 -03-02

- HORIZON-JTI-CLEANH2-2022 -03-04

- HORIZON-JTI-CLEANH2-2022 -04-04

Seal of Excellence

For two topics the ‘Seal of Excellence’ will be awarded to applications exceeding all of the evaluation thresholds set out in this Annual Work Programme but cannot be funded due to lack of budget available to the call. This will further improve the chances of good proposals, otherwise not selected, to find alternative funding in other Union programmes, including those managed by national or regional Managing Authorities. With prior authorisation from the applicant, the Clean Hydrogen JU may share information concerning the proposal and the evaluation with interested financing authorities, subject to the conclusion of confidentiality agreements. In this Annual Work Programme ‘Seal of Excellence’ will be piloted for topics:

- HORIZON-JTI-CLEANH2-2022 -06-01

- HORIZON-JTI-CLEANH2-2022 -06-02

  • Indicative timeline for evaluation and grant agreement: described in Annex F of the Work Programme General Annexes
  1. Legal and financial set-up of the grants: described in Annex G of the Work Programme General Annexes

In addition to the standard provisions, the following specific provisions in the model grant agreement will apply:

Intellectual Property Rights (IPR), background and results, access rights and rights of use (article 16 and Annex 5 of the Model Grant Agreement (MGA)).

  • An additional information obligation has been introduced for topics including standardisation activities: ‘Beneficiaries must, up to 4 years after the end of the action, inform the granting authority if the results could reasonably be expected to contribute to European or international standards’. These concerns the topics below:

Additional information obligation for topics including standardisation activities

- HORIZON-JTI-CLEANH2-2022 -02-09

- HORIZON-JTI-CLEANH2-2022 -03-04

- HORIZON-JTI-CLEANH2-2022 -05-02

- HORIZON-JTI-CLEANH2-2022 -05-03

- HORIZON-JTI-CLEANH2-2022 -05-04

  • For all topics in this Work Programme Clean Hydrogen JU shall have the right to object to transfers of ownership of results, or to grants of an exclusive licence regarding results, if: (a) the beneficiaries which generated the results have received Union funding; (b) the transfer or licensing is to a legal entity established in a non-associated third country; and (c) the transfer or licensing is not in line with Union interests. The grant agreement shall contain a provision in this respect.

Full capitalised costs for purchases of equipment, infrastructure or other assets purchased specifically for the action

For some topics, in line with the Clean Hydrogen JU SRIA, mostly large-scale demonstrators or flagship projects specific equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks) can exceptionally be declared as full capitalised costs. This concerns the topics below:

- HORIZON-JTI-CLEANH2-2022 -01-07: electrolyser and other hydrogen related equipment essential for implementation of the project, (e.g. compression of hydrogen, storage and any essential end-use technology)

- HORIZON-JTI-CLEANH2-2022 -01-08: electrolyser, its BoP and any other hydrogen related equipment essential for the implementation of the project (e.g. hydrogen storage)

- HORIZON-JTI-CLEANH2-2022 -01-10: electrolyser, its BOP and any other hydrogen related equipment essential for implementation of the project (e.g. offshore infrastructure, renewable electricity supply infrastructure, storages, pipelines and other auxiliaries required to convey and utilise the hydrogen)

- HORIZON-JTI-CLEANH2-2022 -02-08: compression prototype/s and related components

- HORIZON-JTI-CLEANH2-2022 -03-03: trucks, fuel cell system, on-board hydrogen storage and other components needed in a hydrogen truck

- HORIZON-JTI-CLEANH2-2022 -03-05: vessels, fuel cell system, on-board hydrogen storage and other components needed in a hydrogen fuel cell hydrogen vessel

- HORIZON-JTI-CLEANH2-2022 -04-01: manufacturing equipment and tooling

- HORIZON-JTI-CLEANH2-2022 -06-01: hydrogen production plant, distribution and storage infrastructure and hydrogen end-uses

- HORIZON-JTI-CLEANH2-2022 -06-02: hydrogen production plant, distribution and storage infrastructure and hydrogen end-uses

Specific conditions

  1. Specific conditions:described in thechapter 2.2.3.2 of the Clean Hydrogen JU 2022 Annual Work Plan

Documents

Call documents:

Application form — As well available in the Submission System from March 31st 2022

Application form - Part B (HE CleanH2 RIA, IA)

Application form - Part B (HE CleanH2 CSA)

 Evaluation forms

Evaluation form (HE RIA, IA)

Evaluation form (HE CSA)

 Model Grant Agreement (MGA)

HE General MGA v1.0  

 Clean Hydrogen JU - Annual Work Programme 2022 (AWP 2022)

AWP 2022

 Clean Hydrogen JU - Strategic Research and Innovation Agenda (SRIA) 

SRIA - Clean Hydrogen JU 

Additional documents:

HE Main Work Programme 2021–2022 – 1. General Introduction

HE Main Work Programme 2021–2022 – 13. General Annexes

HE Programme Guide

HE Framework Programme and Rules for Participation Regulation 2021/695

HE Specific Programme Decision 2021/764

EU Financial Regulation

Rules for Legal Entity Validation, LEAR Appointment and Financial Capacity Assessment

EU Grants AGA — Annotated Model Grant Agreement

Funding & Tenders Portal Online Manual

Funding & Tenders Portal Terms and Conditions

Funding & Tenders Portal Privacy Statement

MORE EUROPEAN UNION GRANTS

Increase ROI Abroad with Global Incentives

Learn how your business can reduce your costs of doing business internationally and improve your return on investment.

Read Guide
global-incentives-dropsheet@1x
HubSpot Video
When we went through our first year with CTI we had an 89% completion rate, to me that’s unheard of...their team is dedicated to working with us and they are trying to maximize your tax credits.
Jay Ramos, President of Amtec