Grant information


closed    Opened: 30 March 2022   |   Closes: 31 May 2022

Overview

Interest for hydrogen as an energy carrier is growing and receiving support in different sectors at an unprecedented rate. Many use-cases for low carbon hydrogen solutions are currently being investigated and include mobility, industrial processes & back-up power. Power-to-gas plants and hydrogen injection into new or pre-existing gas pipeline networks are some of the production and distribution options being developed.

Today, sustainable hydrogen production technologies (e.g. electrolysers, biomass pyrolysis, etc) can only achieve low outlet pressures of 30 bar or less. As a result, a compression step is necessary before gaseous hydrogen can be stored and distributed, as trailer, requiring specific refilling centre.

Hydrogen compression is one of the obstacles to achieving an economical and energy-efficient hydrogen infrastructure. Several mechanical compressor technologies exist but their performances (in terms of CAPEX, OPEX, maintenance, electricity consumption and noise) are insufficient. Innovative, non-mechanical compression technologies have been developed in previous FCH JU projects[1] (PHAEDRUS, Don Quichote, H2Ref, COSMHYC, COSMHYC XL, COSMHYC DEMO) over the past few years and have increased in TRL. However, in order to satisfy the ever increasing and evolving demand for hydrogen as a decarbonisation strategy, the different compression concepts need to be further developed and their ability to meet a wider range of use cases needs to be demonstrated under real operating conditions. In particular, these technologies should demonstrate an improved efficiency compared to mechanical compressors, a higher reliability resulting in lower maintenance costs, a strong flexibility to compress hydrogen from different sources with different profiles (purity, flow rates, pressure levels), and be appropriate to be installed in noise-sensitive environments.

Project results are expected to contribute to all of the following expected outcomes:

  • Contributions to at least 1 full scale demonstrator for hydrogen mobility or industrial use of hydrogen by 2025;
  • Contributing to keep European leadership in the hydrogen infrastructure solutions, based on compression technologies that will be applicable for hydrogen mobility, power-to-gas and industrial use of hydrogen (as refilling centre);
  • Breakthrough and game changing technologies for hydrogen compression will be fully demonstrated by 2026;
  • Foster the replication of the solutions demonstrated in the project in at least 5 additional locations by 2028;
  • Strengthening the European value chain on hydrogen infrastructure by supporting the development of new EU industrial companies (incl. SMEs) active in innovative compression technologies;
  • Lowering the costs of production of renewable hydrogen, thus accelerating the expansion of a hydrogen-based infrastructure (for which hydrogen compression is a key element).

Project results are expected to contribute to all of the following objectives of the Clean Hydrogen JU SRIA:

  • To develop more efficient compressor technologies;
  • To reduce the total cost of ownership of compression and purification technologies;
  • To increase the reliability and lifetime of compression and purification technologies.

H2 compression optimisation as a result of the project will contribute to strengthening the business model for renewable hydrogen production from sustainable technologies (such as water electrolysis via renewable energies), thus further supporting the decarbonisation of the energy sector. Hydrogen distribution methods, such as road transport and hydrogen injection into the gas grid will also greatly benefit from the project, supporting the expansion of the hydrogen refuelling station network in Europe in all sectors of hydrogen mobility (light duty, heavy-duty, trains, ships, etc), thanks to increased reliability and cost-efficiency of the compression bottleneck.

The following KPI’s should be reached at the end of the project:

  • Technical lifetime: Feasibility of achieving 20 years lifetime for the compression solution in the mid-term;
  • MTBF: 10,000 hours in the short term, with a perspective for 25,000 hours in the long-term (for example by extrapolation and using accelerated tests in the demonstration phase, inherent reliability of chosen components, etc);
  • Final pressure target depending by application:
  • Filling Centres: range (300-700) bar
  • HRS: 350-700 bar
  • Pipeline for pure GH2 or blended gas: above 90bar
  • Electricity consumption lower than 4 kWh/kg immediately and lower than 3.2 kWh/kg in the mid-term, starting by a hydrogen source at 10 bar, or demonstrating it;
  • Maintenance costs of 0.1 €/kg immediately, with perspective to achieve 0.03 €/kg in the long term;
  • CAPEX of 1,200 €/(kg H2/day) for demonstration system and prove cost reduction up to 600 €/(kg H2/day) when produced in large series.

Scope

Experience and lessons learnt from hydrogen demonstration projects over the past years clearly point to hydrogen compressors as one of the most critical components in terms of costs, performance and reliability. As one of the core components of most hydrogen installations, improving the state of the art of compressors is of high importance for the future success of hydrogen landscapes.

Several projects[2] have successfully shown the potential of different novel compression technologies and first prototypes have been commissioned and operated at limited scale (4 kg/h in COSMHYC, 8 kg/h in COSMHYC DEMO). There is now a need to scale-up the technologies to >1 t/day to meet the requirements of emerging use cases, incl. gas grid injection, HRS for heavy mobility and distribution supply chain (refilling centre). In addition, while previous projects focused on use cases with limited constraints on the hydrogen source (very high purity, stable supply pressure and flow rate), there is a need to increase the robustness and flexibility of new compression technologies to adapt to a broader range of hydrogen sources with varying gas quality to decrease costs and improve reliability in an industrial context

This topic aims to further develop innovative compression concepts, helping them reach the necessary maturity for large scale deployment. It involves developing, scaling-up, building, installing and testing a compression prototype at a client site with real-life applications (e.g. a hydrogen refuelling station, hydrogen production from renewable energies coupled with a filling centre, gas grid injection) and at a representative scale:

  • Filling Centres: 4-20 tonnes/day;
  • HRS: 0.5-4 tonnes/day;
  • Pipeline for pure GH2 or blended gas: 1-10 tonnes/hr.

It should consist of either an innovative compression solution, or a combination of different solutions including at least one innovative technology. The solution should demonstrate high levels of availability and efficiency, with low costs, low maintenance requirements, and high operational safety.

The demonstration duration should be at least one year of one compression solution at representative scale in a real commercial use case (gas grid injection, mobility, filling centre or a combination of uses) with an availability of at least 95%. In addition, the compression concept’s potential regarding scalability, industrialisation and commercialisation at mass production scale should be proven.

The technology should demonstrate to be well-adapted to a wide range of hydrogen-based applications in all parts of the value chain. In addition, the concept should show its ability to be directly connected to a renewable hydrogen source without the need for further compression steps, and to scale-up above capacity in the mid-term, above reported.

The scope of the project should include the development, manufacturing, installation, and operation of the innovative hydrogen compressor, as well as the necessary resources for measuring, monitoring, treating and interpreting data for a techno-economic analysis throughout the project. The durability of the solution should be shown using specific accelerated stress tests, highlighting a low degradation rate and high reliability.

Proposals should identify a demonstration site and end-users where the compression technology will be applied. A limited share of the funding may be allocated to the costs induced by the surrounding infrastructure to which the compression solution will belong and contribute, including studies, civil engineering, and other equipment (such as HRS, filling centre or gas grid injection facility).

This topic is expected to contribute to EU competitiveness and industrial leadership by supporting a European value chain for hydrogen and fuel cell systems and components.

It is expected that Guarantees of origin (GOs) will be used to prove the renewable character of the hydrogen that is used. In this respect consortium may seek out the purchase and subsequent cancellation of GOs from the relevant Member State issuing body and if that is not yet available the consortium may proceed with the purchase and cancellation of non-governmental certificates (e.g CertifHy[3]).

Proposals should provide a preliminary draft on ‘hydrogen safety planning and management’ at the project level, which will be further updated during project implementation.

Activities are expected to achieve TRL 7 by the end of the project.

At least one partner in the consortium must be a member of either Hydrogen Europe or Hydrogen Europe Research.

The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2022 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2021–2022 which apply mutatis mutandis.

[1]https://www.clean-hydrogen.europa.eu/projects-repository_en

[2]https://www.clean-hydrogen.europa.eu/projects-repository_en

[3]https://www.certifhy.eu/

General Conditions

  1. Admissibility conditions:described inAnnex A and Annex E of the Horizon Europe Work Programme General Annexes

 Proposal page limits and layout: described in Part B of the Application Form available in the Submission System

 Additional condition: For all Innovation Actions the page limit of the applications are 70 pages.

  1. Eligible countries:described inAnnex B of the Work Programme General Annexes

A number of non-EU/non-Associated Countries that are not automatically eligible for funding have made specific provisions for making funding available for their participants in Horizon Europe projects. See the information in the Horizon Europe Programme Guide.

 

  1.  Other eligibility conditions:described in Annex B of the Work Programme General Annexes

Additional eligibility condition: Maximum contribution per topic

For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to limit the Clean Hydrogen JU requested contribution mostly for actions performed at high TRL level, including demonstration in real operation environment and with important involvement from industrial stakeholders and/or end users such as public authorities. Such actions are expected to leverage co-funding as commitment from stakeholders. It is of added value that such leverage is shown through the private investment in these specific topics. Therefore, proposals requesting contributions above the amounts specified per each topic below will not be evaluated:

- HORIZON-JTI-CLEANH2-2022-01-07 - The maximum Clean Hydrogen JU contribution that may be requested is EUR 9.00 million

- HORIZON-JTI-CLEANH2-2022-03-03 - The maximum Clean Hydrogen JU contribution that may be requested is EUR 30.00 million

- HORIZON-JTI-CLEANH2-2022-03-05 - The maximum Clean Hydrogen JU contribution that may be requested is EUR 15.00 million

- HORIZON-JTI-CLEANH2-2022-04-01 - The maximum Clean Hydrogen JU contribution that may be requested is EUR 7.00 million

- HORIZON-JTI-CLEANH2-2022-06-01 - The maximum Clean Hydrogen JU contribution that may be requested is EUR 25.00 million

- HORIZON-JTI-CLEANH2-2022-06-02 - The maximum Clean Hydrogen JU contribution that may be requested is EUR 8.00 million

 Additional eligibility condition: Membership to Hydrogen Europe/Hydrogen Europe Research

For some topics, in line with the Clean Hydrogen JU SRIA, an additional eligibility criterion has been introduced to ensure that one partner in the consortium is a member of either Hydrogen Europe or Hydrogen Europe Research. This concerns topics targeting actions for large-scale demonstrations, flagship projects and strategic research actions, where the industrial and research partners of the Clean Hydrogen JU are considered to play a key role in accelerating the commercialisation of hydrogen technologies by being closely linked to the Clean Hydrogen JU constituency, which could further ensure full alignment with the Strategic Research and Innovation Agenda of the Industry and the SRIA188 of the JU. This approach shall also ensure the continuity of the work performed within projects funded through the H2020 and FP7, by building up on their experience and consolidating the EU value-chain. This applies to the following topics: 

- HORIZON-JTI-CLEANH2-2022 -01-07

- HORIZON-JTI-CLEANH2-2022 -01-08

- HORIZON-JTI-CLEANH2-2022 -01-10

- HORIZON-JTI-CLEANH2-2022 -02-08

- HORIZON-JTI-CLEANH2-2022 -03-03

- HORIZON-JTI-CLEANH2-2022 -03-05

- HORIZON-JTI-CLEANH2-2022 -04-01

- HORIZON-JTI-CLEANH2-2022 -06-01

- HORIZON-JTI-CLEANH2-2022 -06-02

 - HORIZON-JTI-CLEANH2-2022 -07-01

 Additional eligibility condition: Participation of African countries

For one topic the following additional eligibility criteria have been introduced to allow African countries to i) participate in proposal, ii) be eligible for funding and iii) ensure a sufficient geographical coverage of the African continent. This concerns the following topic: 

- HORIZON-JTI-CLEANH2-2022 -05-5

Manufacturing Readiness Assessment

For some topics a definition of Manufacturing Readiness Level has been introduced in the Annexes of the Annual Work Programme. This is necessary to evaluate the status of the overall manufacturing activities included in the following topics:

- HORIZON-JTI-CLEANH2-2022 -01-04

- HORIZON-JTI-CLEANH2-2022 -04-01

  1. Financial and operational capacity and exclusion:described in Annex C of the Work Programme General Annexes
  2. Evaluation and award:
  • Award criteria, scoring and thresholds are described in Annex D of the Work Programme General Annexes
  • Submission and evaluation processes are described in Annex F of the Work Programme General Annexes and the Online Manua

Exemption to evaluation procedure: complementarity of projects

For some topics in order to ensure a balanced portfolio covering complementary approaches, grants will be awarded to applications not only in order of ranking but at least also to one additional project that is / are complementary, provided that the applications attain all thresholds

- HORIZON-JTI-CLEANH2-2022 -01-03

- HORIZON-JTI-CLEANH2-2022 -01-04

- HORIZON-JTI-CLEANH2-2022 -01-09

- HORIZON-JTI-CLEANH2-2022 -02-10

- HORIZON-JTI-CLEANH2-2022 -03-01

- HORIZON-JTI-CLEANH2-2022 -03-02

- HORIZON-JTI-CLEANH2-2022 -03-04

- HORIZON-JTI-CLEANH2-2022 -04-04

Seal of Excellence

For two topics the ‘Seal of Excellence’ will be awarded to applications exceeding all of the evaluation thresholds set out in this Annual Work Programme but cannot be funded due to lack of budget available to the call. This will further improve the chances of good proposals, otherwise not selected, to find alternative funding in other Union programmes, including those managed by national or regional Managing Authorities. With prior authorisation from the applicant, the Clean Hydrogen JU may share information concerning the proposal and the evaluation with interested financing authorities, subject to the conclusion of confidentiality agreements. In this Annual Work Programme ‘Seal of Excellence’ will be piloted for topics:

- HORIZON-JTI-CLEANH2-2022 -06-01

- HORIZON-JTI-CLEANH2-2022 -06-02

  • Indicative timeline for evaluation and grant agreement: described in Annex F of the Work Programme General Annexes
  1. Legal and financial set-up of the grants: described in Annex G of the Work Programme General Annexes

In addition to the standard provisions, the following specific provisions in the model grant agreement will apply:

Intellectual Property Rights (IPR), background and results, access rights and rights of use (article 16 and Annex 5 of the Model Grant Agreement (MGA)).

  • An additional information obligation has been introduced for topics including standardisation activities: ‘Beneficiaries must, up to 4 years after the end of the action, inform the granting authority if the results could reasonably be expected to contribute to European or international standards’. These concerns the topics below:

Additional information obligation for topics including standardisation activities

- HORIZON-JTI-CLEANH2-2022 -02-09

- HORIZON-JTI-CLEANH2-2022 -03-04

- HORIZON-JTI-CLEANH2-2022 -05-02

- HORIZON-JTI-CLEANH2-2022 -05-03

- HORIZON-JTI-CLEANH2-2022 -05-04

  • For all topics in this Work Programme Clean Hydrogen JU shall have the right to object to transfers of ownership of results, or to grants of an exclusive licence regarding results, if: (a) the beneficiaries which generated the results have received Union funding; (b) the transfer or licensing is to a legal entity established in a non-associated third country; and (c) the transfer or licensing is not in line with Union interests. The grant agreement shall contain a provision in this respect.

Full capitalised costs for purchases of equipment, infrastructure or other assets purchased specifically for the action

For some topics, in line with the Clean Hydrogen JU SRIA, mostly large-scale demonstrators or flagship projects specific equipment, infrastructure or other assets purchased specifically for the action (or developed as part of the action tasks) can exceptionally be declared as full capitalised costs. This concerns the topics below:

- HORIZON-JTI-CLEANH2-2022 -01-07: electrolyser and other hydrogen related equipment essential for implementation of the project, (e.g. compression of hydrogen, storage and any essential end-use technology)

- HORIZON-JTI-CLEANH2-2022 -01-08: electrolyser, its BoP and any other hydrogen related equipment essential for the implementation of the project (e.g. hydrogen storage)

- HORIZON-JTI-CLEANH2-2022 -01-10: electrolyser, its BOP and any other hydrogen related equipment essential for implementation of the project (e.g. offshore infrastructure, renewable electricity supply infrastructure, storages, pipelines and other auxiliaries required to convey and utilise the hydrogen)

- HORIZON-JTI-CLEANH2-2022 -02-08: compression prototype/s and related components

- HORIZON-JTI-CLEANH2-2022 -03-03: trucks, fuel cell system, on-board hydrogen storage and other components needed in a hydrogen truck

- HORIZON-JTI-CLEANH2-2022 -03-05: vessels, fuel cell system, on-board hydrogen storage and other components needed in a hydrogen fuel cell hydrogen vessel

- HORIZON-JTI-CLEANH2-2022 -04-01: manufacturing equipment and tooling

- HORIZON-JTI-CLEANH2-2022 -06-01: hydrogen production plant, distribution and storage infrastructure and hydrogen end-uses

- HORIZON-JTI-CLEANH2-2022 -06-02: hydrogen production plant, distribution and storage infrastructure and hydrogen end-uses

Specific conditions

  1. Specific conditions:described in thechapter 2.2.3.2 of the Clean Hydrogen JU 2022 Annual Work Plan

Documents

Call documents:

Application form — As well available in the Submission System from March 31st 2022

Application form - Part B (HE CleanH2 RIA, IA)

Application form - Part B (HE CleanH2 CSA)

 Evaluation forms

Evaluation form (HE RIA, IA)

Evaluation form (HE CSA)

 Model Grant Agreement (MGA)

HE General MGA v1.0  

 Clean Hydrogen JU - Annual Work Programme 2022 (AWP 2022)

AWP 2022

 Clean Hydrogen JU - Strategic Research and Innovation Agenda (SRIA) 

SRIA - Clean Hydrogen JU 

Additional documents:

HE Main Work Programme 2021–2022 – 1. General Introduction

HE Main Work Programme 2021–2022 – 13. General Annexes

HE Programme Guide

HE Framework Programme and Rules for Participation Regulation 2021/695

HE Specific Programme Decision 2021/764

EU Financial Regulation

Rules for Legal Entity Validation, LEAR Appointment and Financial Capacity Assessment

EU Grants AGA — Annotated Model Grant Agreement

Funding & Tenders Portal Online Manual

Funding & Tenders Portal Terms and Conditions

Funding & Tenders Portal Privacy Statement

MORE EUROPEAN UNION GRANTS

Increase ROI Abroad with Global Incentives

Learn how your business can reduce your costs of doing business internationally and improve your return on investment.

Read Guide
global-incentives-dropsheet@1x
HubSpot Video
When we went through our first year with CTI we had an 89% completion rate, to me that’s unheard of...their team is dedicated to working with us and they are trying to maximize your tax credits.
Jay Ramos, President of Amtec